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processes. For example, it is well known that m

ajor

depressive disorder (MDD) results in psychomotor
slowing which affects speech, ideation and motility.

e In previous work, we have studied the sensitivity of the
Articulatory Coordination Features (ACFs) to changes
in neuromotor processing caused by depression

(MDD) and schizophrenia (SZ).

e In this study, we investigate whether ACFs are also

predictive of emotions.
Previous Work on MDD and Schizophrenia

Figure 1 shows the steps needed to derive articulatory

coordination features
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Figure1: Overview of Articulatory Coordination Features

(1) Vocal Tract Variables (TVs)

e Based on Articulatory Phonology o, RO
TTCD =P
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Table 1: List of vocal tract variables (TVs) j
Constriction Tract Variable Articulators \H\ N
Organ

fﬁp Lip Aperture (LA) Upper Lip, \

Lip Protrusion (LP) Lower Lip, Jaw DNN Based
Tongue Body | Tongue body constriction degree (TBCD) | Tongue Body, Speech

Tongue body constriction location (TBCL) | Jaw ™ Inversion
Tongue Tip Tongue tip constriction degree (TTCD) Tongue Body, System [1]
\ Tongue tip constriction location (TTCL) Tip, Jaw j
Velum Velum (VEL) Velum APP Detector
Glottis | Glottis (GLO) | Glottis (Aperiodicity

(2) Articulatory Coordination Features (ACFs)

4 /Periodicity) [2]
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computed from feature vectors at a
specified delay scale (1,3,7,15) L -
Previously computed using proxies for {

e underlying articulatory coordination
(formants, MFCCs etc)

(3) Eigenspectra Computation from ACFs

e Rank-ordered eigenspectra from correlation matri
e Magnitude of eigenvalues represent the average
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correlation in the direction of corresponding eigenvectors

for MDD (top row) and SZ (bottom row) Different Coordination Patterns [3]
Classification of MDD and SZ using Dilated CNNs
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Figure 4: Unimodal architecture for ACF classification

MDD Classification Results (Session-Wise)[4] SZ Classification Results (Subject wise) [5]

Features AUC ROC | UWA Features F1(SZ)/F1(H) UWA
TV ACFs 0.8246 | 0.8024 TV ACFs 0.62/0.78 | 0.7222
MFCC ACFs 0.7016 | 0.6451 MFCC ACFs | 0.55/0.80 | 0.7222
Formant ACFs 0.75 0.7238 FAU ACFs 0.77/0.89 | 0.8333
eGeMAPS 0.6673 | 0.6612 eGeMAPS 0.54/0.78 | 0.7012

Simpler coordination due to depression results in less
coarticulation and undershoot

“He dresses himself in an ancient black frock™
spoken on day O (top) and day 42 (bottom) by patient 123
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Figure 5: Words “black frock” from the read speech of an utterance from the
Grandfather passage for a subject when depressed and in remission

Current Study on Emotion Recognition using TV ACFs

(1) Database
e |IEMOCAP [6] database
-Consists of 5 sessions. In each session, two actors
act out scenarios (scripted or improvised)
-Used 5530 utterances (~7 hours of speech) : neutral
(1708), angry (1103), sad (1083), and happy (1636)
which have majority agreement of annotators
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o 100 dimensional GloVe embeddings generated
from the IEMOCAP transcriptions

Eigenspectra Analysis on IEMOCAP
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Figure 6: Difference plot computed from TVs for IEMOCAP for the the 5530
utterances with majority agreement among annotators (left) and for 2032

utterances with all annotator agreement (right)

The emotion “Sad” shows a simpler articulatory
coordination pattern relative to “Neutral” (like MDD)
The emotion “Angry” shows a more complex
articulatory coordination relative to “Neutral” (like SZ)
These results motivated us to check if articulatory
coordination features derived from TVs can be used for
effective emotion recognition

Statistical sighificance of eigenspectra patterns

Generalized Additive Mixed Models (GAMMSs) to
compare the resulting averaged eigenspectra across

all subjects ] = Sad
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o eGeMAPS model :LSTM model with two LSTM layers
Model TVs eGeMAPS GloVe

UWA (%) 50.81 55.80 61.16

Normalized Confusion Matrix Normalized Confusion Matrix
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(2) Multimodal systems (IEMOCAP)
Model TVs+Glove eGeMAPS+GloVe
UWA (%) 62.70 68.18 [9]

Analysis of Results by TV Model: Over half of the
utterances have more than one speaker and many times
the two speakers have different emotions Thus, using the
ACFs for these utterances is problematic. Further, we
wanted to see how well the system would work if we only
considered the data where all annotators agreed on the
emotion expressed (2032 utterances).

Reduced IEMOCAP dataset: To address the problem of
multi-speaker utterances, we used speaker diarization.
Prior to diarization, we excluded significantly silent
utterances. This reduced the number of utterances from
2032 to around 1000. For this study, we listened to 500 in
the reduced set and found that 145 of the utterances
contained only a single speaker. Given this substantially
reduced data set, we could only use a simpler classifier, a
Support Vector Machine, and a smaller set of features
(averaged eigenspectra) for experiments.

Support Vector Machine (SVM) models

e Eigenspectral features averaged across different
regions (eigen indices) as features for the SVM.
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Discussion and Future work

e The eigenspectra pattern for “Sad” relative to “Neutral”
is similar to that for “Depressed” relative to
“Remission”. Likewise, the eigenspectra pattern for
“Angry” relative to “Neutral” is similar to
“Schizophrenia” relative to “Healthy Controls”.

e TV-based SVM model does better emotion recognition
compared to MFCCs- and formant-based models

e “Clean” data (one speaker) has a significant impact on
the effectiveness of ACFs. Further experiments with a
larger emotion dataset and DNN-based classification
models are planned.

e A multimodal system using ACFs and natural language
processing gives better performance than unimodal
systems.
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